Cassandra Commands Quick Reference
Source/Reference:
http://www.tutorialspoint.com/cassandra/cassandra_quick_guide.htm
http://docs.datastax.com/en/cql/3.0/cql/cql_reference/cql_data_types_c.html

ram@ram-pc:~cqlsh
Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 2.1.4 | CQL spec 3.2.0 | Native protocol v3]
Use HELP for help.
cqlsh>

Data types:
	CQL Type
	Constants
	Description

	ascii
	strings
	US-ASCII character string

	bigint
	integers
	64-bit signed long

	blob
	blobs
	Arbitrary bytes (no validation), expressed as hexadecimal

	boolean
	booleans
	true or false

	counter
	integers
	Distributed counter value (64-bit long)

	decimal
	integers, floats
	Variable-precision decimal

	double
	integers
	64-bit IEEE-754 floating point

	float
	integers, floats
	32-bit IEEE-754 floating point

	inet
	strings
	IP address string in IPv4 or IPv6 format*

	int
	integers
	32-bit signed integer

	list
	n/a
	A collection of one or more ordered elements

	map
	n/a
	A JSON-style array of literals: { literal : literal, literal : literal ... }

	set
	n/a
	A collection of one or more elements

	text
	strings
	UTF-8 encoded string

	timestamp
	integers, strings
	Date plus time, encoded as 8 bytes since epoch

	uuid
	uuids
	A UUID in standard UUID format

	timeuuid
	uuids
	Type 1 UUID only (CQL 3)

	varchar
	strings
	UTF-8 encoded string

	varint
	integers
	Arbitrary-precision integer

cqlsh> help

Documented shell commands:
===========================
CAPTURE COPY DESCRIBE EXPAND PAGING SOURCE
CONSISTENCY DESC EXIT HELP SHOW TRACING

CQL help topics:
================
ALTER CREATE_TABLE_OPTIONS SELECT
ALTER_ADD CREATE_TABLE_TYPES SELECT_COLUMNFAMILY
ALTER_ALTER CREATE_USER SELECT_EXPR
ALTER_DROP DELETE SELECT_LIMIT
ALTER_RENAME DELETE_COLUMNS SELECT_TABLE
ALTER_USER DELETE_USING SELECT_WHERE
ALTER_WITH DELETE_WHERE TEXT_OUTPUT
APPLY DROP TIMESTAMP_INPUT
ASCII_OUTPUT DROP_COLUMNFAMILY TIMESTAMP_OUTPUT
BEGIN DROP_INDEX TRUNCATE
BLOB_INPUT DROP_KEYSPACE TYPES
BOOLEAN_INPUT DROP_TABLE UPDATE
COMPOUND_PRIMARY_KEYS DROP_USER UPDATE_COUNTERS
CREATE GRANT UPDATE_SET
CREATE_COLUMNFAMILY INSERT UPDATE_USING
CREATE_COLUMNFAMILY_OPTIONS LIST UPDATE_WHERE
CREATE_COLUMNFAMILY_TYPES LIST_PERMISSIONS USE
CREATE_INDEX LIST_USERS UUID_INPUT
CREATE_KEYSPACE PERMISSIONS
CREATE_TABLE REVOKE

cqlsh> consistency
Current consistency level is ONE.

cqlsh> capture 'cassandra_out.txt'
Now capturing query output to 'cassandra_out.txt'.

cqlsh> describe cluster;

Cluster: Test Cluster
Partitioner: Murmur3Partitioner

cqlsh> CREATE KEYSPACE employee_personal WITH replication = {'class':'SimpleStrategy', 'replication_factor' : 3};
cqlsh> describe keyspaces;

system_traces system employee_personal

cqlsh> use employee_personal;
cqlsh:employee_personal>

cqlsh:employee_personal> ALTER KEYSPACE employee_personal WITH replication = {'class':'SimpleStrategy', 'replication_factor' : 2};

cqlsh:employee_personal> describe keyspace employee_personal

CREATE KEYSPACE employee_personal WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '2'} AND durable_writes = true;

cqlsh:employee_personal> CREATE TABLE employee(
 ... emp_rollno varint PRIMARY KEY,
 ... emp_fname text,
 ... emp_lname text,
 ... emp_deptid varint,
 ... emp_salary varint);

cqlsh:employee_personal> describe tables;

employee
cqlsh:employee_personal> describe table employee;

CREATE TABLE employee_personal.employee (
 emp_rollno varint PRIMARY KEY,
 emp_deptid varint,
 emp_fname text,
 emp_lname text,
 emp_salary varint
) WITH bloom_filter_fp_chance = 0.01
 AND caching = '{"keys":"ALL", "rows_per_partition":"NONE"}'
 AND comment = ''
 AND compaction = {'min_threshold': '4', 'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy', 'max_threshold': '32'}
 AND compression = {'sstable_compression': 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND dclocal_read_repair_chance = 0.1
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99.0PERCENTILE';

cqlsh:employee_personal> alter table employee add emp_manager_id varint;
cqlsh:employee_personal> alter table employee drop emp_lname;
cqlsh:employee_personal> desc table employee;

CREATE TABLE employee_personal.employee (
 emp_rollno varint PRIMARY KEY,
 emp_deptid varint,
 emp_fname text,
 emp_manager_id varint,
 emp_salary varint
) WITH bloom_filter_fp_chance = 0.01
 AND caching = '{"keys":"ALL", "rows_per_partition":"NONE"}'
 AND comment = ''
 AND compaction = {'min_threshold': '4', 'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy', 'max_threshold': '32'}
 AND compression = {'sstable_compression': 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND dclocal_read_repair_chance = 0.1
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99.0PERCENTILE';

cqlsh:employee_personal> create index ind_deptid on employee(emp_deptid);

cqlsh:employee_personal> insert into employee(emp_rollno, emp_deptid, emp_fname, emp_manager_id, emp_salary)
 ... values (5001, 51, 'Ramkumar', 4731, 34000);

cqlsh:employee_personal> insert into employee(emp_rollno, emp_deptid, emp_fname, emp_manager_id, emp_salary)
 ... values (5002, 52, 'Karthik', 4731, 43000);

cqlsh:employee_personal> insert into employee(emp_rollno, emp_deptid, emp_fname, emp_manager_id, emp_salary)
 ... values (5003, 52, 'Saravanan', 4731, 57000);

cqlsh:employee_personal> update employee set emp_fname = 'RSaravanan', emp_manager_id = 4741 where emp_rollno = 5003;

cqlsh:employee_personal> capture off;
cqlsh:employee_personal> select * from employee;

 emp_rollno | emp_deptid | emp_fname | emp_manager_id | emp_salary
------------+------------+------------+----------------+------------
 5003 | 52 | RSaravanan | 4741 | 57000
 5001 | 51 | Ramkumar | 4731 | 34000
 5002 | 52 | Karthik | 4731 | 43000
cqlsh:employee_personal> select emp_deptid, emp_fname from employee where emp_salary>5000 order by emp_rollno desc;
InvalidRequest: code=2200 [Invalid query] message="ORDER BY with 2ndary indexes is not supported."

cqlsh:employee_personal> select * from employee where emp_deptid = 52;

 emp_rollno | emp_deptid | emp_fname | emp_manager_id | emp_salary
------------+------------+------------+----------------+------------
 5003 | 52 | RSaravanan | 4741 | 57000
 5002 | 52 | Karthik | 4731 | 43000

cqlsh:employee_personal> drop index ind_deptid;
cqlsh:employee_personal> truncate employee;
cqlsh:employee_personal> select * from employee;

 emp_rollno | emp_deptid | emp_fname | emp_manager_id | emp_salary
------------+------------+-----------+----------------+------------

(0 rows)
cqlsh:employee_personal> drop table employee;
cqlsh:employee_personal>

Batch
BEGIN BATCH
< insert-stmt>/ <update-stmt>/ <delete-stmt>
APPLY BATCH

Hbase and Cassandra - Similarities and Differences
HBase vs Cassandra

Note: Entire content of this blog post is copied from below two sources.
please refer the sources for more details.

Source: http://bigdatanoob.blogspot.in/2012/11/hbase-vs-cassandra.html
	 Point
	 HBase
	 Cassandra

	CAP Theorem Focus
	Consistency, Availability
	Availability, Partition-Tolerance

	Consistency
	Strong
	Eventual (Strong is Optional)

	Single Write Master
	Yes
	No (R+W+1 to get Strong Consistency)

	Optimized For
	Reads
	Writes

	Main Data Structure
	CF, RowKey, Name Value Pair Set
	CF, RowKey, Name Value Pair Set

	Dynamic Columns
	Yes
	Yes

	Column Names as Data
	Yes
	Yes

	Static Columns
	No
	Yes

	RowKey Slices
	Yes
	No

	Static Column Value Indexes
	No
	Yes

	Sorted Column Names
	Yes
	Yes

	Cell Versioning Support
	Yes
	No

	
	
	

	Bloom Filters
	Yes
	Yes(only on Key)

	CoProcessors
	Yes
	No

	Triggers
	Yes(Part of Coprocessor)
	No

	Push Down Predicates
	Yes(Part of Coprocessor)
	No

	Atomic Compare and Set
	Yes
	No

	Explicit Row Locks
	Yes
	No

	Row Key Caching
	Yes
	Yes

	Partitioning Strategy
	Ordered Partitioning
	Random Partitioning recommended

	Rebalancing
	Automatic
	Not Needed with Random Partitioning

	Availability
	N-Replicas across Nodes
	N-Replicas across Nodes

	Data Node Failure
	Graceful Degredation
	Graceful Degredation

	Data Node Failure - Replication
	N-Replicas Preserved
	(N-1) Replicas Preserved + Hinted Handoff

	Data Node Restoration
	Same as Node Addition
	Requires Node Repair Admin-action

	Data Node Addition
	Rebalancing Automatic
	Rebalancing Requires Token-Assignment Adjustment

	Data Node Management
	Simple (Roll In, Role Out)
	Human Admin Action Required

	Cluster Admin Nodes
	Zookeeper, NameNode, HMaster
	All Nodes are Equal

	SPOF
	Now, all the Admin Nodes are Fault Tolerant
	All Nodes are Equal

	Write.ANY
	No, but Replicas are Node Agnostic
	Yes (Writes Never Fail if this option is used)

	Write.ONE
	Standard, HA, Strong Consistency
	Yes (often used), HA, Weak Consistency

	Write.QUORUM
	No (not required)
	Yes (often used with Read.QUORUM for Strong Consistency

	Write.ALL
	Yes (performance penalty)
	Yes (performance penalty, not HA)

	Asynchronous WAN Replication
	Yes, but it needs testing on corner cases.
	Yes (Replica's can span data centers)

	Synchronous WAN Replication
	No
	Yes with Write.QUORUM or Write.EACH-QUORUM

	Compression Support
	Yes
	Yes

	Point
	HBase
	Cassandra

		Foundations
	

	HBase is based on BigTable (Google)
	Cassandra is based on DynamoDB (Amazon). Initially developed at Facebook by former Amazon engineers. This is one reason why Cassandra supports multi data center. Rackspace is a big contributor to Cassandra due to multi data center support.

	Infrastructure
	HBase uses the Hadoop Infrastructure (Zookeeper, NameNode, HDFS). Organizations that will deploy Hadoop anyway may be comfortable with leveraging Hadoop knowledge by using HBase
	Cassandra started and evolved separate from Hadoop and its infrastructure and Operational knowledge requirements are different than Hadoop. However, for analytics, many Cassandra deployments use Cassandra + Storm (which uses Zookeeper), and/or Cassandra + Hadoop.

	Infrastructure Simplicity and SPOF
	The HBase-Hadoop Infrastructure has several "moving parts" consisting of Zookeeper, Name Node, Hbase Master, and Data Nodes, Zookeeper is clustered and naturally fault tolerant. Name Node needs to be clustered to be fault tolerant.
	Cassandra uses a a single Node-type. All nodes are equal and perform all functions. Any Node can act as a coordinator, ensuring no SPOF. Adding Storm or Hadoop, of course, adds complexity to the infrastructure.

	Read Intensive Use Cases
	HBase is optimized for reads, supported by single-write master, and resulting strict consistency model, as well as use of Ordered Partitioning which supports row-scans. HBase is well suited for doing Range based scans.
	Cassandra has excellent single-row read performance as long as eventual consistency semantics are sufficient for the use-case. Cassandra quorum reads, which are required for strict consistency will naturally be slower than Hbase reads. Cassandra does not support Range based row-scans which may be limiting in certain use-cases. Cassandra is well suited for supporting single-row queries, or selecting multiple rows based on a Column-Value index.

	Multi-Data Center Support and Disaster Recovery
	HBase provides for asynchronous replication of an HBase Cluster across a WAN. HBase clusters cannot be set up to achieve zero RPO, but in steady-state HBase should be roughly failover-equivalent to any other DBMS that relies on asynchronous replication over a WAN. Fall-back processes and procedures (e.g. after failover) are TBD.
	Cassandra Random Partitioning provides for row-replication of a single row across a WAN, either asynchronous (write.ONE, write.LOCAL_QUORUM), or synchronous (write.QUORUM, write.ALL). Cassandra clusters can therefore be set up to achieve zero RPO, but each write will require at least one wan-ACK back to the coordinator to achieve this capability.

	Write.ONE Durability
	Writes are replicated in a pipeline fashion: the first-data-node for the region persists the write, and then sends the write to the next Natural Endpoint, and so-on in a pipeline fashion. HBase’s commit log "acks" a write only after *all* of the nodes in the pipeline have written the data to their OS buffers. The first Region Server in the pipeline must also have persisted the write to its WAL.
	Cassandra's coordinators will send parallel write-requests to all Natural Endpoints, The coordinator will "ack" the write after exactly one Natural Endpoint has "acked" the write, which means that node has also persisted the write to its WAL. The writes may or may not have committed to any other Natural Endpoint.

	Ordered Partitioning
	HBase only supports Ordered Partitoning. This means that Rows for a CF are stored in RowKey order in HFiles, where each Hfile contains a "block" or "shard" of all the rows in a CF. HFiles are distributed across all data-nodes in the Cluster
	Cassandra officially supports Ordered Partitioning, but no production user of Cassandra uses Ordered Partitioning due to the "hot spots" it creates and the operational difficulties such hot-spots cause. Random Partitioning is the only recommended Cassandra partitioning scheme, and rows are distributed across all nodes in the cluster.

	
	
	

	RowKey Range Scans
	Because of ordered partitioning, HBase queries can be formulated with partial start and end row-keys, and can locate rows inclusive-of, or exclusive of these partial-rowkeys. The start and end row-keys in a range-scan need not even exist in Hbase.
	Because of random partitioning, partial rowkeys cannot be used with Cassandra. RowKeys must be known exactly. Counting rows in a CF is complicated. It is highly recommended that for these types of use-cases, data should be stored in columns in Cassandra, not in rows.

	Linear Scalability for large tables and range scans
	Due to Ordered Partitioning, HBase will easily scale horizontally while still supporting rowkey range scans.
	If data is stored in columns in Cassandra to support range scans, the practical limitation of a row size in Cassandra is 10's of Megabytes. Rows larger than that causes problems with compaction overhead and time.

	Atomic Compare and Set
	HBase supports Atomic Compare and Set. HBase supports supports transaction within a Row.
	Cassandra does not support Atomic Compare and Set. Counters require dedicated counter column-families which because of eventual-consistency requires that all replicas in all natural end-points be read and updated with ACK. However, hinted-handoff mechanisms can make even these built-in counters suspect for accuracy. FIFO queues are difficult (if not impossible) to implement with Cassandra.

	Read Load Balancing - single Row
	Hbase does not support Read Load Balancing against a single row. A single row is served by exactly one region server at a time. Other replicas are used ony in case of a node failure. Scalability is primarily supported by Partitioning which statistically distributes reads of different rows across multiple data nodes.
	Cassandra will support Read Load Balancing against a single row. However, this is primarily supported by Read.ONE, and eventual consistency must be taken into consideration. Scalability is primarily supported by Partitioning which distributes reads of different rows across multiple data nodes.

	Bloom Filters
	Bloom Filters can be used in HBase as another form of Indexing. They work on the basis of RowKey or RowKey+ColumnName to reduce the number of data-blocks that HBase has to read to satisfy a query. (Bloom Filters may exhibit false-positives (reading too much data), but never false negatives (reading not enough data).
	Cassandra uses bloom filters for key lookup.

	Triggers
	Triggers are supported by the CoProcessor capability in HBase. They allow HBase to observe the get/put/delete events on a table (CF), and then execute the trigger-logic. Triggers are coded as java classes.
	Cassandra does not support co-processor-like functionality (as far as we know)

	Secondary Indexes
	Hbase does not natively support secondary indexes, but one use-case of Triggers is that a trigger on a "put" can automatically keep a secondary index up-to-date, and therefore not put the burden on the application (client).
	Cassandra supports secondary indexes on column families where the column name is known. (Not on dynamic columns).

	Simple Aggregation
	Hbase CoProcessors support out-of-the-box simple aggregations in HBase. SUM, MIN, MAX, AVG, STD. Other aggregations can be built by defining java-classes to perform the aggregation
	Aggregations in Cassandra are not supported by the Cassandra nodes - client must provide aggregations. When the aggregation requirement spans multiple rows, Random Partitioning makes aggregations very difficult for the client. Recommendation is to use Storm or Hadoop for aggregations.

	HIVE Integration
	HIVE can access HBase tables directly (uses de-serialization under the hood that is aware of the HBase file format).
	Work in Progress (https://issues.apache.org/jira/browse/CASSANDRA-4131)

	PIG Integration
	PIG has native support for writing into/reading from HBase.
	Cassandra 0.7.4+

Source:http://www.javaworld.com/article/2140805/big-data/big-data-showdown-cassandra-vs-hbase.html

Similarities

- both Cassandra and HBase are open source projects managed under the Apache Software Foundation,
- both are available free under an Apache version 2 license
- Cassandra descends from both Bigtable and Amazon's Dynamo
- HBase describes itself as an "open source Bigtable implementation"

- Both Cassandra and HBase are NoSQL databases
- Generally, it means you cannot manipulate the database with SQL.
- However, Cassandra has implemented CQL (Cassandra Query Language), the syntax of which is obviously modeled after SQL.
- Both are designed to manage extremely large data sets (in billions).
- Anything less, and you're advised to stick with an RDBMS

- Both are distributed databases, not only in how data is stored, but also in how the data can be accessed.
- Clients can connect to any node in the cluster and access any data.

- Both claim near linear scalability. Need to manage twice the data? Then double the number of nodes in your cluster

- Both safeguard data loss from cluster node failure via replication
- If the primary node fails, its data can still be fetched from one of the replica nodes.

- Both are referred to as column-oriented databases
- unlike a relational database, no two rows in a column-oriented database need have the same columns.

- you can add columns to a row on the fly
- it's unlikely you'll hit the limit even if you add tens of thousands of columns.

- Both implement similar write paths that begin with logging write operations to a log file to ensure durability (WAL).
- The data is written next to a memory cache, then finally to disk via a large, sequential write (essentially a copy of the memory cache)
- The overall memory-and-disk data structure used by both Cassandra and HBase is more or less a log-structured merge tree.

- The disk component in Cassandra is the SSTable; in HBase it is the HFile.
- Both provide command-line shells implemented in JRuby. Both are written largely in Java

Differences:

1. Cassandra requires that you identify some nodes as seed nodes, which serve as concentration points for intercluster communication. Meanwhile, on HBase, you must press some nodes into serving as master nodes, whose job it is to monitor and coordinate the actions of region servers.
Thus, Cassandra guarantees high availability by allowing multiple seed nodes in a cluster, while HBase guarantees the same via standby master nodes -- one of which will become the new master should the current master fail.

2.
Cassandra uses the Gossip protocol for internode communications, and Gossip services are integrated with the Cassandra software.
HBase relies on Zookeeper -- an entirely separate distributed application -- to handle corresponding tasks

3. Cassandra lets you create additional, secondary indexes on column values. Hbase do not have secondary index option.

4. While the data manipulation commands of HBase are not as rich as CQL, HBase does have a "filter" capability that executes on the server side of a session and improves scanning (search) throughput.

5. HBase's reliance on Zookeeper -- a separate application -- introduces an additional point of failure (and the attendant difficulties troubleshooting the source of a problem) that Cassandra avoids.

